DC FieldValueLanguage
dc.contributor.authorSánchez-Oro, Jesúsen
dc.contributor.authorMladenović, Nenaden
dc.contributor.authorDuarte, Abrahamen
dc.date.accessioned2020-05-02T16:41:55Z-
dc.date.available2020-05-02T16:41:55Z-
dc.date.issued2017-08-01en
dc.identifier.issn18624472en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2395-
dc.description.abstractComputing graph separators in networks has a wide range of real-world applications. For instance, in telecommunication networks, a separator determines the capacity and brittleness of the network. In the field of graph algorithms, the computation of balanced small-sized separators is very useful, especially for divide-and-conquer algorithms. In bioinformatics and computational biology, separators are required in grid graphs providing a simplified representation of proteins. This papers presents a new heuristic algorithm based on the Variable Neighborhood Search methodology for computing vertex separators. We compare our procedure with the state-of-the-art methods. Computational results show that our procedure obtains the optimum solution in all of the small and medium instances, and high-quality results in large instances.en
dc.publisherSpringer Link-
dc.relation.ispartofOptimization Lettersen
dc.subjectCombinatorial optimization | Graph separators | Metaheuristics | VNSen
dc.titleGeneral Variable Neighborhood Search for computing graph separatorsen
dc.typeArticleen
dc.identifier.doi10.1007/s11590-014-0793-zen
dc.identifier.scopus2-s2.0-85024475655en
dc.relation.firstpage1069en
dc.relation.lastpage1089en
dc.relation.issue6en
dc.relation.volume11en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-6655-0409-
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 23, 2024

Page view(s)

21
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.