DC FieldValueLanguage
dc.contributor.authorPyatkin, Artemen
dc.contributor.authorAloise, Danielen
dc.contributor.authorMladenović, Nenaden
dc.date.accessioned2020-05-02T16:41:54Z-
dc.date.available2020-05-02T16:41:54Z-
dc.date.issued2017-10-01en
dc.identifier.issn0167-8655en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2391-
dc.description.abstractThe balanced clustering problem consists of partitioning a set of n objects into K equal-sized clusters as long as n is a multiple of K. A popular clustering criterion when the objects are points of a q-dimensional space is the minimum sum of squared distances from each point to the centroid of the cluster to which it belongs. We show in this paper that this problem is NP-hard in general dimension already for triplets, i.e., when n/K=3.en
dc.publisherElsevier-
dc.relationRFBR, projects 16-07-00168 and 15-01-00462-
dc.relationRSF grant 14-41-00039-
dc.relationCNPq/Brazil grants 308887/2014-0 and 400350/2014-9-
dc.relation.ispartofPattern Recognition Lettersen
dc.subjectBalanced clustering | Complexity | Sum-of-squaresen
dc.titleNP-Hardness of balanced minimum sum-of-squares clusteringen
dc.typeArticleen
dc.identifier.doi10.1016/j.patrec.2017.05.033en
dc.identifier.scopus2-s2.0-85021763075en
dc.relation.firstpage44en
dc.relation.lastpage45en
dc.relation.volume97en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-6655-0409-
Show simple item record

SCOPUSTM   
Citations

10
checked on Apr 2, 2025

Page view(s)

35
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.