DC FieldValueLanguage
dc.contributor.authorCosta, Leandroen
dc.contributor.authorAloise, Danielen
dc.contributor.authorMladenović, Nenaden
dc.date.accessioned2020-05-02T16:41:54Z-
dc.date.available2020-05-02T16:41:54Z-
dc.date.issued2017-11-01en
dc.identifier.issn0020-0255en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2390-
dc.description.abstractClustering addresses the problem of finding homogeneous and well-separated subsets, called clusters, from a set of given data points. In addition to the points themselves, in many applications, there may exist constraints regarding the size of the clusters to be found. Particularly in balanced clustering, these constraints impose that the entities be equally spread among the different clusters. In this work, we present a basic variable neighborhood search heuristic for balanced minimum sum-of-squares clustering, following the recently proposed “Less Is More Approach”. Computational experiments and statistical tests show that the proposed algorithm outperforms the current state-of-the-art algorithm for the problem, indicating that non sophisticated and easy to implement metaheuristic methods can be sufficient to produce successful results in practice.en
dc.publisherElsevier-
dc.relationCNPq-Brazil grants 308887/2014-0 and 400350/2014-9-
dc.relationRSF grant 14-41-00039-
dc.relation.ispartofInformation Sciencesen
dc.subjectBalanced clustering | Minimum sum-of-squares | Optimizationen
dc.titleLess is more: basic variable neighborhood search heuristic for balanced minimum sum-of-squares clusteringen
dc.typeArticleen
dc.identifier.doi10.1016/j.ins.2017.06.019en
dc.identifier.scopus2-s2.0-85021316393en
dc.relation.firstpage247en
dc.relation.lastpage253en
dc.relation.volume415-416en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-6655-0409-
Show simple item record

SCOPUSTM   
Citations

49
checked on Nov 24, 2024

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.