DC FieldValueLanguage
dc.contributor.authorda Silva, Thiago Gouveiaen
dc.contributor.authorde Sousa Filho, Gilbertoen
dc.contributor.authorBarbosa, Igoren
dc.contributor.authorMladenović, Nenaden
dc.contributor.authorCabral, Lucidioen
dc.contributor.authorOchi, Luiz Satoruen
dc.contributor.authorAloise, Danielen
dc.date.accessioned2020-05-02T16:41:54Z-
dc.date.available2020-05-02T16:41:54Z-
dc.date.issued2018-04-01en
dc.identifier.issn1571-0653-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2387-
dc.description.abstractLet G=(V,E,L) be an edge-labeled graph. Let V be the set of vertices of G, E the set of edges, L the set of labels (colors) such that each edge e∈E has an associated label L(e). The goal of the minimum labeling global cut problem (MLGCP) is to find a subset L′⊆L of labels such that G′=(V,E′,L\L′) is not connected and |L′| is minimized. In this work, we generate random instances for the MLGCP to perform empirical tests. Also propose a set of heuristics using concepts of Genetic Algorithm and metaheuristic VNS, including some of their procedures, like two local search moves, and an auxiliary data structure to speed up the local search. Computational experiments show that the metaheuristic VNS outperforms other methods with respect to solution quality.en
dc.publisherElsevier-
dc.relation.ispartofElectronic Notes in Discrete Mathematicsen
dc.subjectConnectivity | Edge-Labeled Graphs | Variable Neighborhood Searchen
dc.titleEfficient heuristics for the minimum labeling global cut problemen
dc.typeArticleen
dc.identifier.doi10.1016/j.endm.2018.03.004en
dc.identifier.scopus2-s2.0-85054538164en
dc.relation.firstpage23en
dc.relation.lastpage30en
dc.relation.volume66en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-6655-0409-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

Page view(s)

16
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.