DC FieldValueLanguage
dc.contributor.authorFörg-Rob, Wolfgangen
dc.contributor.authorKrapež, Aleksandaren
dc.date.accessioned2020-05-02T16:41:51Z-
dc.date.available2020-05-02T16:41:51Z-
dc.date.issued2005-01-01en
dc.identifier.issn0001-9054en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2362-
dc.description.abstractWe define a special class of linear quasigroup functional equations and call them height preserving equations (short for the equations which preserve the height of variables). It is proved that a quasigroup satisfying a height preserving but not Belousov equation is isotopic to an abelian group. The formulas of a general solution are also given. Some results of Belousov are discussed and partially generalized.en
dc.publisherSpringer Link-
dc.relation.ispartofAequationes Mathematicaeen
dc.subjectBelousov equation | General solution | Height preserving equation | Level equation | Linear equation | Medial quasigroup | Paramedial quasigroup | Quasigroup | Quasigroup functional equation | T-quasigroupen
dc.titleEquations which preserve the height of variablesen
dc.typeArticleen
dc.identifier.doi10.1007/s00010-005-2790-xen
dc.identifier.scopus2-s2.0-24944547930en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage63en
dc.relation.lastpage76en
dc.relation.issue1-2en
dc.relation.volume70en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-9533-1739-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 19, 2024

Page view(s)

21
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.