DC FieldValueLanguage
dc.contributor.authorKrapež, Aleksandaren
dc.date.accessioned2020-05-02T16:41:50Z-
dc.date.available2020-05-02T16:41:50Z-
dc.date.issued2007-01-01en
dc.identifier.issn0350-1302en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2361-
dc.description.abstractWe consider a class of functional equations with one operational symbol which is assumed to be a quasigroup. Equations are quadratic, level and have four variables each. Therefore, they are of the form x1x2 · x3x4 = x5x6 · x7x8 with xi ∈ {x, y, u, v} (I ≤ i ≤ 8) with each of the variables occurring exactly twice in the equation. There are 105 such equations. They separate into 19 equivalence classes defining 19 quasigroup varieties. The paper (partially) generalizes the results of some retent papers of Förg-Rob and Krapeẑ, and Polonijo.en
dc.publisherMathematical Institute of the SASA-
dc.relationMinistry of Sciences of Serbia, Grants 144013 and 144018-
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.subjectBalanced equation | Belousov equation | Functional equation | Gemini equation | General solution | Isotopy | Level equation | Medial equation | Quadratic equation | Quasigroup | Quasigroup (left, right) linear over a group | T-quasigroup | Varietyen
dc.titleQuadratic level quasigroup equations with four variables Ien
dc.typeArticleen
dc.identifier.doi10.2298/PIM0795053Ken
dc.identifier.scopus2-s2.0-51849133256en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage53en
dc.relation.lastpage67en
dc.relation.issue95en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-9533-1739-

#### SCOPUSTM Citations

6
checked on Jun 15, 2024

#### Page view(s)

49
checked on May 9, 2024