DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baralić, Đorđe | en |
dc.date.accessioned | 2020-05-02T12:08:06Z | - |
dc.date.available | 2020-05-02T12:08:06Z | - |
dc.date.issued | 2014-01-01 | en |
dc.identifier.issn | 0350-1302 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2342 | - |
dc.description.abstract | A quasitoric manifold M2n over the cube In is studied. The Stiefel-Whitney classes are calculated and used as the obstructions for immersions, embeddings and totally skew embeddings. The manifold M2n, when n is a power of 2, has interesting properties: imm(M2n) = 4n-2, em(M2n) = 4n-1 and N(M2n) ≥ 8n-3. | en |
dc.publisher | Mathematical Institute of the SASA | - |
dc.relation | Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems | - |
dc.relation.ispartof | Publications de l'Institut Mathematique | en |
dc.subject | Cube | Embeddings | Immersions | Quasitoric manifolds | Stiefel-Whitney classes | en |
dc.title | Immersions and embeddings of quasitoric manifolds over the cube | en |
dc.type | Article | en |
dc.identifier.doi | 10.2298/PIM1409063B | en |
dc.identifier.scopus | 2-s2.0-84897942802 | en |
dc.relation.firstpage | 63 | en |
dc.relation.lastpage | 71 | en |
dc.relation.issue | 109 | en |
dc.relation.volume | 95 | en |
dc.description.rank | M23 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0003-2836-7958 | - |
SCOPUSTM
Citations
4
checked on Nov 24, 2024
Page view(s)
17
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.