DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen
dc.date.accessioned2020-05-02T12:08:06Z-
dc.date.available2020-05-02T12:08:06Z-
dc.date.issued2014-01-01en
dc.identifier.issn0350-1302en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2342-
dc.description.abstractA quasitoric manifold M2n over the cube In is studied. The Stiefel-Whitney classes are calculated and used as the obstructions for immersions, embeddings and totally skew embeddings. The manifold M2n, when n is a power of 2, has interesting properties: imm(M2n) = 4n-2, em(M2n) = 4n-1 and N(M2n) ≥ 8n-3.en
dc.publisherMathematical Institute of the SASA-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.subjectCube | Embeddings | Immersions | Quasitoric manifolds | Stiefel-Whitney classesen
dc.titleImmersions and embeddings of quasitoric manifolds over the cubeen
dc.typeArticleen
dc.identifier.doi10.2298/PIM1409063Ben
dc.identifier.scopus2-s2.0-84897942802en
dc.relation.firstpage63en
dc.relation.lastpage71en
dc.relation.issue109en
dc.relation.volume95en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2836-7958-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 24, 2024

Page view(s)

17
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.