DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baralić, Đorđe | en |
dc.date.accessioned | 2020-05-02T12:08:06Z | - |
dc.date.available | 2020-05-02T12:08:06Z | - |
dc.date.issued | 2014-01-01 | en |
dc.identifier.issn | 0350-1302 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2342 | - |
dc.description.abstract | A quasitoric manifold M2n over the cube In is studied. The Stiefel-Whitney classes are calculated and used as the obstructions for immersions, embeddings and totally skew embeddings. The manifold M2n, when n is a power of 2, has interesting properties: imm(M2n) = 4n-2, em(M2n) = 4n-1 and N(M2n) ≥ 8n-3. | en |
dc.publisher | Mathematical Institute of the SASA | - |
dc.relation | Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems | - |
dc.relation.ispartof | Publications de l'Institut Mathematique | en |
dc.subject | Cube | Embeddings | Immersions | Quasitoric manifolds | Stiefel-Whitney classes | en |
dc.title | Immersions and embeddings of quasitoric manifolds over the cube | en |
dc.type | Article | en |
dc.identifier.doi | 10.2298/PIM1409063B | en |
dc.identifier.scopus | 2-s2.0-84897942802 | en |
dc.relation.firstpage | 63 | en |
dc.relation.lastpage | 71 | en |
dc.relation.issue | 109 | en |
dc.relation.volume | 95 | en |
dc.description.rank | M23 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-2836-7958 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.