DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen
dc.date.accessioned2020-05-02T12:08:06Z-
dc.date.available2020-05-02T12:08:06Z-
dc.date.issued2014-01-01en
dc.identifier.issn0350-1302en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2342-
dc.description.abstractA quasitoric manifold M2n over the cube In is studied. The Stiefel-Whitney classes are calculated and used as the obstructions for immersions, embeddings and totally skew embeddings. The manifold M2n, when n is a power of 2, has interesting properties: imm(M2n) = 4n-2, em(M2n) = 4n-1 and N(M2n) ≥ 8n-3.en
dc.publisherMathematical Institute of the SASA-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.subjectCube | Embeddings | Immersions | Quasitoric manifolds | Stiefel-Whitney classesen
dc.titleImmersions and embeddings of quasitoric manifolds over the cubeen
dc.typeArticleen
dc.identifier.doi10.2298/PIM1409063Ben
dc.identifier.scopus2-s2.0-84897942802en
dc.relation.firstpage63en
dc.relation.lastpage71en
dc.relation.issue109en
dc.relation.volume95en
dc.description.rankM23-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2836-7958-
Show simple item record

SCOPUSTM   
Citations

4
checked on Apr 4, 2025

Page view(s)

19
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.