DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen
dc.contributor.authorLazar, Ioanaen
dc.date.accessioned2020-05-02T12:08:06Z-
dc.date.available2020-05-02T12:08:06Z-
dc.date.issued2016-01-01en
dc.identifier.issn1220-3874en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2338-
dc.description.abstractWe investigate the collapsibility of systolic finite simplicial complexes of arbitrary dimension. The main tool we use in the proof is discrete Morse theory. We shall consider a convex subcomplex of the complex and project any simplex of the complex onto a ball around this convex subcomplex. These projections will induce a convenient gradient matching on the complex. Besides we analyze the combinatorial structure of both CAT(0) and systolic locally finite simplicial complexes of arbitrary dimensions. We will show that both such complexes possess an arborescent structure. Along the way we make use of certain well known results regarding systolic geometry.en
dc.publisherSocietatea de Stiinte Matematice din Romani-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationMinistry for Science of the Republic of Srpska, Grant 19/6-020/961120/14-
dc.relation.ispartofBulletin Mathematique de la Societe des Sciences Mathematiques de Roumanieen
dc.subjectArborescent structure | Collapsibility | Directed geodesic | Local 6-largeness | Morse matchingen
dc.titleA note on the combinatorial structure of finite and locally finite simplicial complexes of nonpositive curvatureen
dc.typeArticleen
dc.identifier.scopus2-s2.0-84988822455en
dc.relation.firstpage205en
dc.relation.lastpage216en
dc.relation.issue3en
dc.relation.volume59en
dc.description.rankM22-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2836-7958-
Show simple item record

Page view(s)

50
checked on May 9, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.