DC FieldValueLanguage
dc.contributor.authorVučković, Đorđeen
dc.contributor.authorVindas, Jassonen
dc.date.accessioned2020-05-02T12:08:05Z-
dc.date.available2020-05-02T12:08:05Z-
dc.date.issued2016-12-01en
dc.identifier.issn1662-9981en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2332-
dc.description.abstractWe obtain a characterization of S{Mp}{Mp}(Rn) and S(Mp)(Mp)(Rn), the general Gelfand–Shilov spaces of ultradifferentiable functions of Roumieu and Beurling type, in terms of decay estimates for the Fourier coefficients of their elements with respect to eigenfunction expansions associated to normal globally elliptic differential operators of Shubin type. Moreover, we show that the eigenfunctions of such operators are absolute Schauder bases for these spaces of ultradifferentiable functions. Our characterization extends earlier results by Gramchev et al. (Proc Am Math Soc 139:4361–4368, 2011) for Gevrey weight sequences. It also generalizes to Rn recent results by Dasgupta and Ruzhansky which were obtained in the setting of compact manifolds.en
dc.publisherSpringer Link-
dc.relation.ispartofJournal of Pseudo-Differential Operators and Applicationsen
dc.subjectDenjoy–Carleman classes | Eigenfunction expansions | Gelfand–Shilov spaces | Shubin type differential operators | Ultradifferentiable functions | Ultradistributionsen
dc.titleEigenfunction expansions of ultradifferentiable functions and ultradistributions in Rnen
dc.typeArticleen
dc.identifier.doi10.1007/s11868-016-0157-9en
dc.identifier.scopus2-s2.0-84992058725en
dc.relation.firstpage519en
dc.relation.lastpage531en
dc.relation.issue4en
dc.relation.volume7en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

15
checked on Dec 26, 2024

Page view(s)

22
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.