DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vučković, Đorđe | en |
dc.contributor.author | Vindas, Jasson | en |
dc.date.accessioned | 2020-05-02T12:08:05Z | - |
dc.date.available | 2020-05-02T12:08:05Z | - |
dc.date.issued | 2017-01-01 | en |
dc.identifier.issn | 0255-0156 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2331 | - |
dc.description.abstract | We prove that an ultradistribution is rotation invariant if and only if it coincides with its spherical mean. For it, we study the problem of spherical representations of ultradistributions on ℝn. Our results apply to both the quasianalytic and the non-quasianalytic case. | en |
dc.publisher | Springer Link | - |
dc.relation | Ghent University, BOF-grant 01N01014 | - |
dc.relation.ispartof | Generalized Functions and Fourier Analysis | en |
dc.relation.ispartofseries | Operator Theory: Advances and Applications | - |
dc.subject | Hyperfunctions | Rotation invariant | Spherical harmonics | Spherical means | Spherical representations | Ultradistributions | en |
dc.title | Rotation invariant ultradistributions | en |
dc.type | Book Chapter | en |
dc.identifier.doi | 10.1007/978-3-319-51911-1_15 | en |
dc.identifier.scopus | 2-s2.0-85019115465 | en |
dc.relation.firstpage | 253 | en |
dc.relation.lastpage | 267 | en |
dc.relation.volume | 260 | en |
item.cerifentitytype | Publications | - |
item.openairetype | Book Chapter | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
SCOPUSTM
Citations
2
checked on Dec 27, 2024
Page view(s)
21
checked on Dec 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.