DC FieldValueLanguage
dc.contributor.authorVučković, Đorđeen
dc.contributor.authorVindas, Jassonen
dc.date.accessioned2020-05-02T12:08:05Z-
dc.date.available2020-05-02T12:08:05Z-
dc.date.issued2017-01-01en
dc.identifier.issn0255-0156en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2331-
dc.description.abstractWe prove that an ultradistribution is rotation invariant if and only if it coincides with its spherical mean. For it, we study the problem of spherical representations of ultradistributions on ℝn. Our results apply to both the quasianalytic and the non-quasianalytic case.en
dc.publisherSpringer Link-
dc.relationGhent University, BOF-grant 01N01014-
dc.relation.ispartofGeneralized Functions and Fourier Analysisen
dc.relation.ispartofseriesOperator Theory: Advances and Applications-
dc.subjectHyperfunctions | Rotation invariant | Spherical harmonics | Spherical means | Spherical representations | Ultradistributionsen
dc.titleRotation invariant ultradistributionsen
dc.typeBook Chapteren
dc.identifier.doi10.1007/978-3-319-51911-1_15en
dc.identifier.scopus2-s2.0-85019115465en
dc.relation.firstpage253en
dc.relation.lastpage267en
dc.relation.volume260en
item.cerifentitytypePublications-
item.openairetypeBook Chapter-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 27, 2024

Page view(s)

21
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.