DC FieldValueLanguage
dc.contributor.authorVesić, Nenaden
dc.date.accessioned2020-05-02T12:08:05Z-
dc.date.available2020-05-02T12:08:05Z-
dc.date.issued2018-01-01en
dc.identifier.issn1787-2405en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2325-
dc.description.abstractIn this paper, invariants of geodesic mappings of non-symmetric affine connection manifolds are studied. It is obtained new generalizations of the Weyl projective tensor of these manifolds. At the end of this paper, generalized invariants of a geodesic mapping between special three dimensional generalized Riemannian manifolds Gℝ3 and GR3 are obtained.en
dc.publisherMiskolc University Press-
dc.relationGeometry, Education and Visualization With Applications-
dc.relation.ispartofMiskolc Mathematical Notesen
dc.subjectAffine connection | Curvature tensor | Invariant | Weyl projective tensoren
dc.titleWeyl projective objects W1, W2, W3 for equitorsion geodesic mappingsen
dc.typeArticleen
dc.identifier.doi10.18514/MMN.2018.2219en
dc.identifier.scopus2-s2.0-85049146294en
dc.relation.firstpage665en
dc.relation.lastpage675en
dc.relation.issue1en
dc.relation.volume19en
dc.description.rankM23-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7598-9058-
Show simple item record

SCOPUSTM   
Citations

3
checked on Jul 17, 2024

Page view(s)

49
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.