DC FieldValueLanguage
dc.contributor.authorStošić, Markoen
dc.date.accessioned2020-05-02T12:08:04Z-
dc.date.available2020-05-02T12:08:04Z-
dc.date.issued2007-12-01en
dc.identifier.issn1472-2747en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2316-
dc.description.abstractIn this paper we show that the nonalternating torus knots are homologically thick, ie that their Khovanov homology occupies at least three diagonals. Furthermore, we show that we can reduce the number of full twists of the torus knot without changing certain part of its homology, and consequently, there exists stable homology of torus knots conjectured by Dunfield, Gukov and Rasmussen in [Experiment. Math. 15 (2006) 129-159]. Since our main tool is the long exact sequence in homology, we have applied our approach in the case of the Khovanov -Rozansky sl(n) homology, and thus obtained analogous stability properties of sl(n) homology of torus knots, also conjectured by Dunfield, Gukov and Rasmussen.en
dc.publisherMathematical Sciences Publishers-
dc.relation.ispartofAlgebraic and Geometric Topologyen
dc.subjectKhovanov homology | Stability | Thickness | Torus knotsen
dc.titleHomological thickness and stability of torus knotsen
dc.typeArticleen
dc.identifier.doi10.2140/agt.2007.7.261en
dc.identifier.scopus2-s2.0-58349111953en
dc.relation.firstpage261en
dc.relation.lastpage284en
dc.relation.issue1en
dc.relation.volume7en
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

23
checked on Dec 20, 2024

Page view(s)

18
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.