DC FieldValueLanguage
dc.contributor.authorAguiar, Pedroen
dc.contributor.authorStošić, Markoen
dc.contributor.authorXavier, Joãoen
dc.date.accessioned2020-05-02T12:08:03Z-
dc.date.available2020-05-02T12:08:03Z-
dc.date.issued2008-10-16en
dc.identifier.issn0024-3795en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2313-
dc.description.abstractIn this paper we study singular values of a matrix whose one entry varies while all other entries are prescribed. In particular, we find the possible pth singular value of such a matrix, and we define explicitly the unknown entry such that the completed matrix has the minimal possible pth singular value. This in turn determines possible pth singular value of a matrix under rank one perturbation. Moreover, we determine the possible value of pth singular value of a partially prescribed matrix whose set of unknown entries has a form of a Young diagram. In particular, we give a fast algorithm for defining the completion that minimizes the pth singular value of such matrix.en
dc.publisherElsevier-
dc.relationFoundation for Science and Technology (FCT), under ISR/IST plurianual funding (POSC program, FEDER), and grants MODI-PTDC/EEA-ACR/72201/2006 and SIPM-PTDC/EEA-ACR/73749/2006-
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectMatrix completion | Rank deficiency matrix | Singular valueen
dc.titleOn singular values of partially prescribed matricesen
dc.typeArticleen
dc.identifier.doi10.1016/j.laa.2008.06.021en
dc.identifier.scopus2-s2.0-49249090348en
dc.relation.firstpage2136en
dc.relation.lastpage2145en
dc.relation.issue8-9en
dc.relation.volume429en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

5
checked on Apr 2, 2025

Page view(s)

17
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.