DC FieldValueLanguage
dc.contributor.authorStošić, Markoen
dc.date.accessioned2020-05-02T12:08:03Z-
dc.date.available2020-05-02T12:08:03Z-
dc.date.issued2009-01-01en
dc.identifier.issn0166-8641en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2308-
dc.description.abstractIn this paper we show that there is a cut-off in the Khovanov homology of (2 k, 2 k n)-torus links, namely that the maximal homological degree of non-zero homology groups of (2 k, 2 k n)-torus links is 2 k2 n. Furthermore, we calculate explicitly the homology group in homological degree 2 k2 n and prove that it coincides with the center of the ring Hk of crossingless matchings, introduced by M. Khovanov in [M. Khovanov, A functor-valued invariant for tangles, Algebr. Geom. Topol. 2 (2002) 665-741, arXiv:math.QA/0103190]. This gives the proof of part of a conjecture by M. Khovanov and L. Rozansky in [M. Khovanov, L. Rozansky, A homology theory for links in S2 × S1, in preparation]. Also we give an explicit formula for the ranks of the homology groups of (3, n)-torus knots for every n ∈ N.en
dc.publisherElsevier-
dc.relationFEDER, project Quantum Topology POCI/MAT/60352/2004-
dc.relationMinistry of Science of Serbia, project 144032-
dc.relation.ispartofTopology and its Applicationsen
dc.subjectHochschild cohomology | Khovanov homology | Torus knotsen
dc.titleKhovanov homology of torus linksen
dc.typeArticleen
dc.identifier.doi10.1016/j.topol.2008.08.004en
dc.identifier.scopus2-s2.0-58349095141en
dc.relation.firstpage533en
dc.relation.lastpage541en
dc.relation.issue3en
dc.relation.volume156en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

22
checked on Dec 20, 2024

Page view(s)

18
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.