DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mackaay, Marco | en |
dc.contributor.author | Stošić, Marko | en |
dc.contributor.author | Vaz, Pedro | en |
dc.date.accessioned | 2020-05-02T12:08:03Z | - |
dc.date.available | 2020-05-02T12:08:03Z | - |
dc.date.issued | 2009-12-01 | en |
dc.identifier.issn | 1364-0380 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2306 | - |
dc.description.abstract | We use foams to give a topological construction of a rational link homology categorifying the sl(N) link invariant, for N ≥ 4. To evaluate closed foams we use the Kapustin -Li formula adapted to foams by Khovanov and Rozansky [Adv. Theor. Math. Phys. 11 (2007) 233 259]. We show that for any link our homology is isomorphic to the Khovanov -Rozansky [Fund. Math. 199 (2008) 191] homology. | en |
dc.publisher | Mathematical Sciences Publishers | - |
dc.relation | Ministry of Science of Serbia, project 144032 | - |
dc.relation.ispartof | Geometry and Topology | en |
dc.subject | Foams | Kapustin-Li | Khovanov-Rozansky | Link homology | mathfraksl(N) | en |
dc.title | Sl(N)-link homology (N≥ 4) using foams and the Kapustin-Li formula | en |
dc.type | Article | en |
dc.identifier.doi | 10.2140/gt.2009.13.1075 | en |
dc.identifier.scopus | 2-s2.0-74249100145 | en |
dc.relation.firstpage | 1075 | en |
dc.relation.lastpage | 1128 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 13 | en |
dc.description.rank | M21a | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-4464-396X | - |
SCOPUSTM
Citations
46
checked on Apr 2, 2025
Page view(s)
17
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.