DC FieldValueLanguage
dc.contributor.authorStošić, Markoen
dc.date.accessioned2020-05-02T12:08:01Z-
dc.date.available2020-05-02T12:08:01Z-
dc.date.issued2015-01-01en
dc.identifier.issn1073-2780en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2292-
dc.description.abstractWe compute the indecomposable objects of U+3 - The categorification of U+q(sl3), the positive half of quantum sl3 - And we decompose an arbitrary object into indecomposable ones. On the decategorified level, we obtain Lusztig's canonical basis of U+q (sl3). We also categorify the higher quantum Serre relations in U+q(sl3), by defining a certain complex in the homotopy category of U+3 that is homotopic to zero. All our work is done over the ring of integers. This paper is based on the extended diagrammatic calculus introduced to categorify quantum groups.en
dc.publisherInternational Press-
dc.relationGeometry, Education and Visualization With Applications-
dc.relationQuantum fields and knot homologies-
dc.relation.ispartofMathematical Research Lettersen
dc.titleIndecomposable objects and Lusztig's canonical basisen
dc.typeArticleen
dc.identifier.doi10.4310/MRL.2015.v22.n1.a13en
dc.identifier.scopus2-s2.0-84927604309en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage245en
dc.relation.lastpage278en
dc.relation.issue1en
dc.relation.volume22en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderNSF-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/0335739-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 20, 2024

Page view(s)

18
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.