DC FieldValueLanguage
dc.contributor.authorZeković, Anaen
dc.contributor.authorJablan, Slaviken
dc.contributor.authorKauffman, Louisen
dc.contributor.authorSazdanović, Radmilaen
dc.contributor.authorStošić, Markoen
dc.date.accessioned2020-05-02T12:08:01Z-
dc.date.available2020-05-02T12:08:01Z-
dc.date.issued2016-08-01en
dc.identifier.issn0218-2165en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2289-
dc.description.abstractWe introduce concepts of the maximum unknotting number and the mixed unknotting number, taking into consideration the Bernhard-Jablan Conjecture about computing the unknotting number based only on minimal knot diagrams. The existence of Kauffman knots (alternating knots, such that a crossing change does not change their minimal crossing number) was first suggested by Kauffman. We extend the concept and offer three related classes of knots named: Kauffman knots, Zeković knots and Taniyama knots.en
dc.publisherWorld Scientific-
dc.relation.ispartofJournal of Knot Theory and its Ramificationsen
dc.subjectConway notation | maximum unknotting number | Unknotting number | unlinking numberen
dc.titleUnknotting and maximum unknotting numbersen
dc.typeArticleen
dc.identifier.doi10.1142/S0218216516410108en
dc.identifier.scopus2-s2.0-84979240749en
dc.relation.issue9en
dc.relation.volume25en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 25, 2024

Page view(s)

12
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.