DC FieldValueLanguage
dc.contributor.authorPanfil, Miłoszen
dc.contributor.authorStošić, Markoen
dc.contributor.authorSułkowski, Piotren
dc.date.accessioned2020-05-02T12:08:00Z-
dc.date.available2020-05-02T12:08:00Z-
dc.date.issued2018-07-15en
dc.identifier.issn2470-0010en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2284-
dc.description.abstractIn this paper, we find and explore the correspondence between quivers, torus knots, and combinatorics of counting paths. Our first result pertains to quiver representation theory - we find explicit formulas for classical generating functions and Donaldson-Thomas invariants of an arbitrary symmetric quiver. We then focus on quivers corresponding to (r,s) torus knots and show that their classical generating functions, in the extremal limit and framing rs, are generating functions of lattice paths under the line of the slope r/s. Generating functions of such paths satisfy extremal A-polynomial equations, which immediately follows after representing them in terms of the Duchon grammar. Moreover, these extremal A-polynomial equations encode Donaldson-Thomas invariants, which provides an interesting example of algebraicity of generating functions of these invariants. We also find a quantum generalization of these statements, i.e. a relation between motivic quiver generating functions, quantum extremal knot invariants, and q-weighted path counting. Finally, in the case of the unknot, we generalize this correspondence to the full HOMFLY-PT invariants and counting of Schröder paths.en
dc.publisherAmerican Physical Society-
dc.relationQuantum fields and knot homologies-
dc.relationPortuguese Fundação para a Ciência e a Tecnologia (FCT), FCT Investigador Grant No. IF/00998/2015-
dc.relationGeometry, Education and Visualization With Applications-
dc.relationNational Science Centre, FUGA Grant No. 2015/16/S/ST2/00448-
dc.relation.ispartofPhysical Review Den
dc.titleDonaldson-Thomas invariants, torus knots, and lattice pathsen
dc.typeArticleen
dc.identifier.doi10.1103/PhysRevD.98.026022en
dc.identifier.scopus2-s2.0-85051142764en
dc.relation.issue2en
dc.relation.volume98en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderNSF-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/0335739-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

SCOPUSTM   
Citations

21
checked on Dec 20, 2024

Page view(s)

27
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.