DC FieldValueLanguage
dc.contributor.authorBell, Murrayen
dc.contributor.authorGinsburg, Johnen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:31Z-
dc.date.available2020-05-01T20:29:31Z-
dc.date.issued1982-01-01en
dc.identifier.issn0166-8641en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2277-
dc.description.abstractWe show that it is consistent with ZFC that there exists a compact 0-dimensional Hausdorff space X for which exp X has countable spread, but X is not metrizable. This establishes the independence of Malyhin's problem. The space X also has no uncountable weakly separated subspaces, its superextension is first countable, and its square is a strong S-space. For 0-dimensional Y we prove that λY has countable spread iff Y is compact and metrizable. We show that it is consistent with ZFC that if Y is 0-dimensional and λY is first countable, then Y is compact and metrizable.en
dc.publisherElsevier-
dc.relation.ispartofTopology and its Applicationsen
dc.titleCountable spread of exp Y and λYen
dc.typeArticleen
dc.identifier.doi10.1016/0166-8641(82)90043-8en
dc.identifier.scopus2-s2.0-0037955026en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1en
dc.relation.lastpage12en
dc.relation.issue1en
dc.relation.volume14en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

25
checked on Nov 23, 2024

Page view(s)

18
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.