DC FieldValueLanguage
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:29Z-
dc.date.available2020-05-01T20:29:29Z-
dc.date.issued1993-01-01en
dc.identifier.issn0002-9947en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2261-
dc.description.abstractIt is shown that every uncountable Boolean algebra A contains an uncountable subset such that no a of is in the subalgebra generated by I\{a{ using an additional axiom of set theory. It is also shown that a use of some such axiom is necessary.en
dc.publisherAmerican Mathematical Society-
dc.relation.ispartofTransactions of the American Mathematical Societyen
dc.titleIrredundant sets in boolean algebrasen
dc.typeArticleen
dc.identifier.doi10.1090/S0002-9947-1993-1080736-3en
dc.identifier.scopus2-s2.0-84968495696en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage35en
dc.relation.lastpage44en
dc.relation.issue1en
dc.relation.volume339en
dc.description.rankM21-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

10
checked on Jul 22, 2024

Page view(s)

40
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.