DC Field | Value | Language |
---|---|---|
dc.contributor.author | Llopis, Jimena | en |
dc.contributor.author | Todorčević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:29:29Z | - |
dc.date.available | 2020-05-01T20:29:29Z | - |
dc.date.issued | 1996-12-01 | en |
dc.identifier.issn | 0001-5504 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2254 | - |
dc.description.abstract | In this paper we prove the following polarized partition relation: For every sequence {mt}i<ω of natural numbers, there is an increasing sequence {ni}t<ω such that: for every sequence of sets {Ai}t<ω with |At| = nt, and for every Borel partition f : (Πt<ω At) → 2, there are sets {Ht}t<ω with |Ht| = mt such that f is constant on (Πt<ω Ht). This gives a positive answer to the Borel version of the following question asked in [DiPH]. Is there a sequence {ni}t<ω of natural numbers such that the partition relation (Formula Presented) holds? | en |
dc.publisher | Asociacion Venezolana para el Avance de la Ciencia | - |
dc.relation.ispartof | Acta Cientifica Venezolana | en |
dc.subject | Borel Partitions | Infinite Combinatorics | Set Theory | en |
dc.title | Borel partitions of products of finite sets | en |
dc.type | Article | en |
dc.identifier.scopus | 2-s2.0-0007007744 | en |
dc.relation.firstpage | 85 | en |
dc.relation.lastpage | 88 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 47 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
6
checked on Apr 3, 2025
Page view(s)
24
checked on Jan 31, 2025
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.