DC FieldValueLanguage
dc.contributor.authorLlopis, Jimenaen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:29Z-
dc.date.available2020-05-01T20:29:29Z-
dc.date.issued1996-12-01en
dc.identifier.issn0001-5504en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2254-
dc.description.abstractIn this paper we prove the following polarized partition relation: For every sequence {mt}i<ω of natural numbers, there is an increasing sequence {ni}t<ω such that: for every sequence of sets {Ai}t<ω with |At| = nt, and for every Borel partition f : (Πt<ω At) → 2, there are sets {Ht}t<ω with |Ht| = mt such that f is constant on (Πt<ω Ht). This gives a positive answer to the Borel version of the following question asked in [DiPH]. Is there a sequence {ni}t<ω of natural numbers such that the partition relation (Formula Presented) holds?en
dc.publisherAsociacion Venezolana para el Avance de la Ciencia-
dc.relation.ispartofActa Cientifica Venezolanaen
dc.subjectBorel Partitions | Infinite Combinatorics | Set Theoryen
dc.titleBorel partitions of products of finite setsen
dc.typeArticleen
dc.identifier.scopus2-s2.0-0007007744en
dc.relation.firstpage85en
dc.relation.lastpage88en
dc.relation.issue2en
dc.relation.volume47en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

6
checked on Apr 3, 2025

Page view(s)

24
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.