DC FieldValueLanguage
dc.contributor.authorDi Prisco, Carlosen
dc.contributor.authorLlopis, Jimenaen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:27Z-
dc.date.available2020-05-01T20:29:27Z-
dc.date.issued2001-01-01en
dc.identifier.issn0097-3165en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2239-
dc.description.abstractIt is shown that for every primitive recursive sequence mi∞i=0 of positive integers, there is an ackermannic sequence ni∞i=0 of positive integers such that for every partition of the product ∏∞i=0ni into two Borel pieces, there are sets Hi⊆ni with Hi=mi such that the subproduct ∏∞i=0Hi is included in one of the pieces.en
dc.publisherElsevier-
dc.relation.ispartofJournal of Combinatorial Theory. Series Aen
dc.titleBorel partitions of products of finite sets and the Ackermann functionen
dc.typeArticleen
dc.identifier.doi10.1006/jcta.2000.3082en
dc.identifier.scopus2-s2.0-0035255789en
dc.relation.firstpage333en
dc.relation.lastpage349en
dc.relation.issue2en
dc.relation.volume93en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

7
checked on Apr 4, 2025

Page view(s)

29
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.