DC FieldValueLanguage
dc.contributor.authorTodorčević, Stevoen
dc.contributor.authorUzcátegui, Carlosen
dc.date.accessioned2020-05-01T20:29:26Z-
dc.date.available2020-05-01T20:29:26Z-
dc.date.issued2005-01-01en
dc.identifier.issn0166-8641en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2231-
dc.description.abstractWe study sequential convergence in spaces with analytic topologies avoiding thus a number of standard pathologies. For example, we identify bisequentiality of an analytic space as the Fréchet property of its square. We show that a countable Fréchet group is metrizable if and only if its topology is analytic. We also investigate the diagonal sequence properties and show their productiveness in the class of analytic spaces.en
dc.publisherElsevier-
dc.relation.ispartofTopology and its Applicationsen
dc.subjectAnalytic topology | Fréchet group | Sequential spaceen
dc.titleAnalytic k-spacesen
dc.typeArticleen
dc.identifier.doi10.1016/j.topol.2003.09.013en
dc.identifier.scopus2-s2.0-10144220643en
dc.relation.firstpage511en
dc.relation.lastpage526en
dc.relation.volume146-147en
dc.description.rankM23-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

34
checked on Nov 24, 2024

Page view(s)

12
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.