DC FieldValueLanguage
dc.contributor.authorTamano, Kenichien
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:26Z-
dc.date.available2020-05-01T20:29:26Z-
dc.date.issued2005-01-01en
dc.identifier.issn0166-8641en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2230-
dc.description.abstractA space is called a μ-space if it can be embedded in a countable product of paracompact Fσ-metrizable spaces. The following are shown: (1) For a Tychonoff space X, if Cp(X,R) is a μ-space, then X is a countable union of compact metrizable subspaces. (2) For a zero-dimensional space X, Cp(X,2) is a μ-space if and only if X is a countable union of compact metrizable subspaces. In particular, let P be the space of irrational numbers. Then Cp(P,2) is a cosmic space (i.e., a space with a countable network) which is not a μ-space.en
dc.publisherElsevier-
dc.relation.ispartofTopology and its Applicationsen
dc.subjectCosmic space | Function space | Paracompact σ-space | Pointwise convergence | μ-spaceen
dc.titleCosmic spaces which are not μ-spaces among function spaces with the topology of pointwise convergenceen
dc.typeArticleen
dc.identifier.doi10.1016/j.topol.2004.03.004en
dc.identifier.scopus2-s2.0-10144262548en
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage611en
dc.relation.lastpage616en
dc.relation.volume146-147en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 27, 2024

Page view(s)

18
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.