DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tamano, Kenichi | en |
dc.contributor.author | Todorčević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:29:26Z | - |
dc.date.available | 2020-05-01T20:29:26Z | - |
dc.date.issued | 2005-01-01 | en |
dc.identifier.issn | 0166-8641 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2230 | - |
dc.description.abstract | A space is called a μ-space if it can be embedded in a countable product of paracompact Fσ-metrizable spaces. The following are shown: (1) For a Tychonoff space X, if Cp(X,R) is a μ-space, then X is a countable union of compact metrizable subspaces. (2) For a zero-dimensional space X, Cp(X,2) is a μ-space if and only if X is a countable union of compact metrizable subspaces. In particular, let P be the space of irrational numbers. Then Cp(P,2) is a cosmic space (i.e., a space with a countable network) which is not a μ-space. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Topology and its Applications | en |
dc.subject | Cosmic space | Function space | Paracompact σ-space | Pointwise convergence | μ-space | en |
dc.title | Cosmic spaces which are not μ-spaces among function spaces with the topology of pointwise convergence | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.topol.2004.03.004 | en |
dc.identifier.scopus | 2-s2.0-10144262548 | en |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
dc.relation.firstpage | 611 | en |
dc.relation.lastpage | 616 | en |
dc.relation.volume | 146-147 | en |
dc.description.rank | M23 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
2
checked on Dec 27, 2024
Page view(s)
18
checked on Dec 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.