DC Field | Value | Language |
---|---|---|
dc.contributor.author | Todorčević, Stevo | en |
dc.contributor.author | Zoble, Stuart | en |
dc.date.accessioned | 2020-05-01T20:29:26Z | - |
dc.date.available | 2020-05-01T20:29:26Z | - |
dc.date.issued | 2008-12-01 | en |
dc.identifier.issn | 0002-9947 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2225 | - |
dc.description.abstract | We study reflection principles involving nonmeager sets and the Baire Property which are consequences of the generic supercompactness of ω2, such as the principle asserting that any point countable Baire space has a stationary set of closed subspaces of weight ω1 which are also Baire spaces. These principles entail the analogous principles of stationary reflection but are incompatible with forcing axioms. Assuming MM, there is a Baire metric space in which a club of closed subspaces of weight ω1 are meager in themselves. Unlike stronger forms of Game Reflection, these reflection principles do not decide CH, though they do give ω2 as an upper bound for the size of the continuum. | en |
dc.publisher | American Mathematical Society | - |
dc.relation.ispartof | Transactions of the American Mathematical Society | en |
dc.subject | Baire Property | Game Reflection | Martin's Maximum | en |
dc.title | Baire reflection | en |
dc.type | Article | en |
dc.identifier.doi | 10.1090/S0002-9947-08-04503-0 | en |
dc.identifier.scopus | 2-s2.0-77951161457 | en |
dc.relation.firstpage | 6181 | en |
dc.relation.lastpage | 6195 | en |
dc.relation.issue | 12 | en |
dc.relation.volume | 360 | en |
dc.description.rank | M21 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
1
checked on Nov 24, 2024
Page view(s)
14
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.