DC FieldValueLanguage
dc.contributor.authorLopez-Abad, Jorgeen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:25Z-
dc.date.available2020-05-01T20:29:25Z-
dc.date.issued2009-09-01en
dc.identifier.issn0002-9947en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2221-
dc.description.abstractWe present a Banach space X with a Schauder basis of length ω1 which is saturatedby copies of c0 and such that for every closed decomposition of a closedsubspace X = X0⊕ X1, either X0 or X1 has to be separable. This can be considered as the non-separable counterpart of the notion of hereditarily indecomposable space. Indeed, the subspaces of X have "few operators" in the sense that every bounded operator T: R → X from a subspace X of X into X is the sum of a multiple of the inclusion and a ω1- singular operator, i.e., an operator S which is not an isomorphism on any non-separable subspace of X. We also show that while X is not distortable (being c0-saturated), it is arbitrarily ω1-distortable in the sense that for every λ > 1 there is an equivalent norm |||. ||| on X such that for every non-separable subspace X of X there exist x, y ∈ SX suchthat |||x|||/|||y||| ≥ λ.en
dc.publisherAmerican Mathematical Society-
dc.relation.ispartofTransactions of the American Mathematical Societyen
dc.titleA c0-saturated banach space with no long unconditional basic sequencesen
dc.typeArticleen
dc.identifier.doi10.1090/S0002-9947-09-04858-2en
dc.identifier.scopus2-s2.0-77950651254en
dc.relation.firstpage4541en
dc.relation.lastpage4560en
dc.relation.issue9en
dc.relation.volume361en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 26, 2024

Page view(s)

22
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.