DC FieldValueLanguage
dc.contributor.authorFinkel, Olivieren
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:25Z-
dc.date.available2020-05-01T20:29:25Z-
dc.date.issued2010-04-01en
dc.identifier.issn1895-1074en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2220-
dc.description.abstractAn ω-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω-tree-automatic structures. We prove first that the isomorphism relation for ω-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n ≥ 2) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for ω-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n ≥ 2) is neither a Σ21-set nor a Π21-set.en
dc.publisherSpringer Link-
dc.relation.ispartofCentral European Journal of Mathematicsen
dc.subjectω-tree-automatic structures | Boolean algebras | Groups | Independence results | Isomorphism relation | Models of set theory | Partial orders | Ringsen
dc.titleThe isomorphism relation between tree-automatic Structuresen
dc.typeArticleen
dc.identifier.doi10.2478/s11533-010-0014-7en
dc.identifier.scopus2-s2.0-77953055128en
dc.relation.firstpage299en
dc.relation.lastpage313en
dc.relation.issue2en
dc.relation.volume8en
dc.description.rankM22-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

6
checked on Jul 21, 2024

Page view(s)

26
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.