DC Field | Value | Language |
---|---|---|
dc.contributor.author | Solecki, Slawomir | en |
dc.contributor.author | Todorčević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:29:25Z | - |
dc.date.available | 2020-05-01T20:29:25Z | - |
dc.date.issued | 2011-04-01 | en |
dc.identifier.issn | 1474-7480 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2212 | - |
dc.description.abstract | We investigate Tukey functions from the ideal of all closed nowhere-dense subsets of 2N. In particular, we answer an old question of Isbell and Fremlin by showing that this ideal is not Tukey reducible to the ideal of density zero subsets of N. We also prove non-existence of various special types of Tukey reductions from the nowhere-dense ideal to analytic P-ideals. In connection with these results, we study families F of clopen subsets of 2 N with the property that for each nowhere-dense subset of 2 N there is a set in F not intersecting it. We call such families avoiding. | en |
dc.publisher | Cambridge University Press | - |
dc.relation | NSF, Grant DMS-0700841 | - |
dc.relation.ispartof | Journal of the Institute of Mathematics of Jussieu | en |
dc.subject | analytic P-ideals | nowhere-dense sets | Tukey reductions | en |
dc.title | Avoiding families and Tukey functions on the nowhere-dense ideal | en |
dc.type | Article | en |
dc.identifier.doi | 10.1017/S1474748010000277 | en |
dc.identifier.scopus | 2-s2.0-82555197042 | en |
dc.relation.firstpage | 405 | en |
dc.relation.lastpage | 435 | en |
dc.relation.issue | 2 | en |
dc.relation.volume | 10 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
12
checked on Apr 3, 2025
Page view(s)
19
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.