DC Field | Value | Language |
---|---|---|
dc.contributor.author | Di Prisco, Carlos | en |
dc.contributor.author | Todorčević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:29:24Z | - |
dc.date.available | 2020-05-01T20:29:24Z | - |
dc.date.issued | 2012-10-06 | en |
dc.identifier.issn | 0012-365X | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2202 | - |
dc.description.abstract | We study graphs defined on families of finite sets of natural numbers and their chromatic properties. Of particular interest are graphs for which the edge relation is given by the shift. We show that when considering shift graphs with infinite chromatic number, one can center attention on graphs defined on precompact thin families. We define a quasi-order relation on the collection of uniform families defined in terms of homomorphisms between their corresponding shift graphs, and show that there are descending ω1-sequences. Specker graphs are also considered and their relation with shift graphs is established. We characterize the family of Specker graphs which contain a homomorphic image of a shift graph. | en |
dc.publisher | Elsevier | - |
dc.relation | CNRS-FONACIT, Grant PI2009000240 | - |
dc.relation | NSERC, Grant 455916 | - |
dc.relation.ispartof | Discrete Mathematics | en |
dc.subject | Shift graphs | en |
dc.title | Shift graphs on precompact families of finite sets of natural numbers | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.disc.2012.05.010 | en |
dc.identifier.scopus | 2-s2.0-84863986546 | en |
dc.relation.firstpage | 2915 | en |
dc.relation.lastpage | 2926 | en |
dc.relation.issue | 19 | en |
dc.relation.volume | 312 | en |
dc.description.rank | M22 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
3
checked on Apr 3, 2025
Page view(s)
17
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.