DC Field | Value | Language |
---|---|---|
dc.contributor.author | Todorčević, Stevo | en |
dc.contributor.author | Tyros, Konstantinos | en |
dc.date.accessioned | 2020-05-01T20:29:24Z | - |
dc.date.available | 2020-05-01T20:29:24Z | - |
dc.date.issued | 2013-01-01 | en |
dc.identifier.issn | 0097-3165 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2201 | - |
dc.description.abstract | In this note we prove that for every sequence (mq)q of positive integers and for every real 0<δ≤1 there is a sequence (nq)q of positive integers such that for every sequence (Hq)q of finite sets such that |H q|=n q for every q∈N and for every Dkq=0k-1Hq with the property thatlimsupk|D∩q=0k-1Hq||q=0k-1Hq|δ there is a sequence (Jq)q, where J qH q and |J q|=m q for all q, such that q=0k-1JqD for infinitely many k. This gives us a density version of a well-known Ramsey-theoretic result. We also give some estimates on the sequence (nq)q in terms of the sequence of (mq)q. | en |
dc.publisher | Elsevier | - |
dc.relation.ispartof | Journal of Combinatorial Theory. Series A | en |
dc.subject | Density | Finite sets | Ramsey theory | en |
dc.title | Subsets of products of finite sets of positive upper density | en |
dc.type | Article | en |
dc.identifier.doi | 10.1016/j.jcta.2012.07.010 | en |
dc.identifier.scopus | 2-s2.0-84866773297 | en |
dc.relation.firstpage | 183 | en |
dc.relation.lastpage | 193 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 120 | en |
dc.description.rank | M21 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
4
checked on Feb 4, 2025
Page view(s)
17
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.