DC FieldValueLanguage
dc.contributor.authorTodorčević, Stevoen
dc.contributor.authorTyros, Konstantinosen
dc.date.accessioned2020-05-01T20:29:24Z-
dc.date.available2020-05-01T20:29:24Z-
dc.date.issued2013-01-01en
dc.identifier.issn0097-3165en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2201-
dc.description.abstractIn this note we prove that for every sequence (mq)q of positive integers and for every real 0<δ≤1 there is a sequence (nq)q of positive integers such that for every sequence (Hq)q of finite sets such that |H q|=n q for every q∈N and for every Dkq=0k-1Hq with the property thatlimsupk|D∩q=0k-1Hq||q=0k-1Hq|δ there is a sequence (Jq)q, where J qH q and |J q|=m q for all q, such that q=0k-1JqD for infinitely many k. This gives us a density version of a well-known Ramsey-theoretic result. We also give some estimates on the sequence (nq)q in terms of the sequence of (mq)q.en
dc.publisherElsevier-
dc.relation.ispartofJournal of Combinatorial Theory. Series Aen
dc.subjectDensity | Finite sets | Ramsey theoryen
dc.titleSubsets of products of finite sets of positive upper densityen
dc.typeArticleen
dc.identifier.doi10.1016/j.jcta.2012.07.010en
dc.identifier.scopus2-s2.0-84866773297en
dc.relation.firstpage183en
dc.relation.lastpage193en
dc.relation.issue1en
dc.relation.volume120en
dc.description.rankM21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

4
checked on Feb 4, 2025

Page view(s)

17
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.