DC FieldValueLanguage
dc.contributor.authorRaghavan, Dilipen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:23Z-
dc.date.available2020-05-01T20:29:23Z-
dc.date.issued2014-01-01en
dc.identifier.issn1073-2780en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2195-
dc.description.abstractAssuming the P-ideal dichotomy, we attempt to isolate those cardinal characteristics of the continuum that are correlated with two well-known consequences of the proper forcing axiom. We find a cardinal invariant x such that the statement that x < ω1 is equivalent to the statement that 1, ω, ω1, ω × ω1, and [ω1]<ω are the only cofinal types of directed sets of size at most N1. We investigate the corresponding problem for the partition relation ω1 → (ω1, α)2 for all α < ω1. To this effect, we investigate partition relations for pairs of comparable elements of a coherent Suslin tree S. We show that a positive partition relation for such pairs follows from the maximal amount of the proper forcing axiom compatible with the existence of S. As a consequence, we conclude that after forcing with the coherent Suslin tree S over a ground model satisfying this relativization of the proper forcing axiom, ω1 → (ω1, α)2 for all α < ω1. We prove that this positive partition relation for S cannot be improved by showing in ZFC that S → (N1, ω + 2)2.en
dc.publisherInternational Press-
dc.relation.ispartofMathematical Research Lettersen
dc.subjectCardinal invariants | Coherent Suslin tree | Combinatorial dichotomies | Laver property | P-ideal dichotomy | Partition relationen
dc.titleCombinatorial dichotomies and cardinal invariantsen
dc.typeArticleen
dc.identifier.doi10.4310/MRL.2014.v21.n2.a13en
dc.identifier.scopus2-s2.0-84906238505en
dc.relation.firstpage379en
dc.relation.lastpage401en
dc.relation.issue2en
dc.relation.volume21en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 26, 2024

Page view(s)

25
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.