DC FieldValueLanguage
dc.contributor.authorDobrinen, Natashaen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:23Z-
dc.date.available2020-05-01T20:29:23Z-
dc.date.issued2014-01-02en
dc.identifier.issn0002-9947en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2193-
dc.description.abstractMotivated by a Tukey classification problem, we develop a new topological Ramsey space R1 that in its complexity comes immediately after the classical Ellentuck space. Associated with R1 is an ultrafilter U1 which is weakly Ramsey but not Ramsey. We prove a canonization theorem for equivalence relations on fronts on R1. This is analogous to the Pudlak-Rödl Theorem canonizing equivalence relations on barriers on the Ellentuck space. We then apply our canonization theorem to completely classify all Rudin-Keisler equivalence classes of ultrafilters which are Tukey reducible to U1: Every ultrafilter which is Tukey reducible to U1 is isomorphic to a countable iteration of Fubini products of ultrafilters from among a fixed countable collection of ultrafilters. Moreover, we show that there is exactly one Tukey type of nonprincipal ultrafilters strictly below that of U1, namely the Tukey type of a Ramsey ultrafilter.en
dc.publisherAmerican Mathematical Society-
dc.relation.ispartofTransactions of the American Mathematical Societyen
dc.titleA new class of Ramsey-classification theorems and their application in the Tukey theory of ultrafilters, part 1en
dc.typeArticleen
dc.identifier.doi10.1090/S0002-9947-2013-05844-8en
dc.identifier.scopus2-s2.0-84891293100en
dc.relation.firstpage1659en
dc.relation.lastpage1684en
dc.relation.issue3en
dc.relation.volume366en
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

27
checked on Jan 13, 2025

Page view(s)

17
checked on Jan 14, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.