DC FieldValueLanguage
dc.contributor.authorTodorčević, Stevoen
dc.contributor.authorUzcátegui, Carlosen
dc.date.accessioned2020-05-01T20:29:23Z-
dc.date.available2020-05-01T20:29:23Z-
dc.date.issued2014-04-01en
dc.identifier.issn0166-8641en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2190-
dc.description.abstractA topological space X is said to be maximal if its topology is maximal among all T1 topologies over X without isolated points. It is known that a space is maximal if, and only if, it is extremely disconnected, nodec and every open set is irresolvable. We present some results about the complexity of those properties on countable spaces. A countable topological space X is analytic if its topology is an analytic subset of P(X) identified with the Cantor cube {0,1}X. No extremely disconnected space can be analytic and every analytic space is hereditarily resolvable. However, we construct an example of a nodec regular analytic space.en
dc.publisherElsevier-
dc.relation.ispartofTopology and its Applicationsen
dc.subjectAnalytic sets | Maximal topologies | Nodec countable spacesen
dc.titleA nodec regular analytic topologyen
dc.typeArticleen
dc.identifier.doi10.1016/j.topol.2014.02.002en
dc.identifier.scopus2-s2.0-84894654799en
dc.relation.firstpage85en
dc.relation.lastpage91en
dc.relation.volume166en
dc.description.rankM22-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

4
checked on Apr 17, 2025

Page view(s)

17
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.