DC FieldValueLanguage
dc.contributor.authorTodorčević, Stevoen
dc.contributor.authorTyros, Konstantinosen
dc.date.accessioned2020-05-01T20:29:23Z-
dc.date.available2020-05-01T20:29:23Z-
dc.date.issued2014-06-06en
dc.identifier.issn0012-365Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2188-
dc.description.abstractWe prove that for every real ε>0 there exists a positive integer t such that for every finite coloring of the nondecreasing surjections from [0,1] onto [0,1] there exist t many colors such that their ε-fattening contains a cube, i.e. a set of the form {fâ̂̃h:fnondecreasingsurjection from[0,1]onto[0,1]} where h is a nondecreasing surjection from [0,1] onto [0,1]. We prove this as a consequence of a corresponding result about bω and we determine the minimal integer t=t(ε) that works for a given ε>0.en
dc.publisherElsevier-
dc.relation.ispartofDiscrete Mathematicsen
dc.subjectCantor set | Dual Ramsey theory | Ramsey degree | Unit intervalen
dc.titleOscillation stability for continuous monotone surjectionsen
dc.typeArticleen
dc.identifier.doi10.1016/j.disc.2014.01.020en
dc.identifier.scopus2-s2.0-84893936728en
dc.relation.firstpage4en
dc.relation.lastpage12en
dc.relation.issue1en
dc.relation.volume324en
dc.description.rankM22-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

1
checked on Jun 22, 2024

Page view(s)

43
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.