DC FieldValueLanguage
dc.contributor.authorAvilés, Antonioen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:22Z-
dc.date.available2020-05-01T20:29:22Z-
dc.date.issued2015-06-27en
dc.identifier.issn0073-8301en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2186-
dc.description.abstractAn n-gap consists of n many pairwise orthogonal families of subsets of a countable set that cannot be separated. We prove that for every positive integer n there is a finite basis for the class of analytic n-gaps. The proof requires an analysis of certain combinatorial problems on the n-adic tree, and in particular a new partition theorem for trees.en
dc.publisherSpringer Link-
dc.relation.ispartofPublications Mathematiques de l'Institut des Hautes Etudes Scientifiquesen
dc.titleFinite basis for analytic multiple gapsen
dc.typeArticleen
dc.identifier.doi10.1007/s10240-014-0063-8en
dc.identifier.scopus2-s2.0-84929961618en
dc.relation.firstpage57en
dc.relation.lastpage79en
dc.relation.issue1en
dc.relation.volume121en
dc.description.rankM21a-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

9
checked on Apr 2, 2025

Page view(s)

21
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.