DC FieldValueLanguage
dc.contributor.authorKurilić, Milošen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:22Z-
dc.date.available2020-05-01T20:29:22Z-
dc.date.issued2016-08-01en
dc.identifier.issn0168-0072en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2182-
dc.description.abstractLet G be a countable graph containing a copy of the countable universal and homogeneous graph, also known as the random graph. Let Emb(G) be the monoid of self-embeddings of G, P(G)=(f[G]:f∈Emb(G)) the set of copies of G contained in G, and IG the ideal of subsets of G which do not contain a copy of G. We show that the poset 〈P(G),⊂〉, the algebra P(G)/IG, and the inverse of the right Green's pre-order 〈Emb(G), ≤R〉 have the 2-localization property. The Boolean completions of these pre-orders are isomorphic and satisfy the following law: for each double sequence [bnm:〈n, m〉∈ω×ω] of elements of B denotes the set of all binary subtrees of the tree ω<ω..en
dc.publisherElsevier-
dc.relationSet Theory, Model Theory and Set-Theoretic Topology-
dc.relationCNRS and NSERC, Grant 455916-
dc.relation.ispartofAnnals of Pure and Applied Logicen
dc.subject2-localization | Countable random graph | Forcing | Isomorphic substructure | Right Green's pre-order | Self-embeddingen
dc.titleThe poset of all copies of the random graph has the 2-localization propertyen
dc.typeArticleen
dc.identifier.doi10.1016/j.apal.2016.04.001en
dc.identifier.scopus2-s2.0-84964361612en
dc.relation.firstpage649en
dc.relation.lastpage662en
dc.relation.issue8en
dc.relation.volume167en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174006-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

7
checked on Dec 26, 2024

Page view(s)

16
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.