DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kuzeljević, Boriša | en |
dc.contributor.author | Todorčević, Stevo | en |
dc.date.accessioned | 2020-05-01T20:29:22Z | - |
dc.date.available | 2020-05-01T20:29:22Z | - |
dc.date.issued | 2017-01-01 | en |
dc.identifier.issn | 0002-9939 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2178 | - |
dc.description.abstract | We analyze the forcing notion P of finite matrices whose rows consist of isomorphic countable elementary submodels of a given structure of the form Hθ. We show that forcing with this poset adds a Kurepa tree T. Moreover, if Pc is a suborder of P containing only continuous matrices, then the Kurepa tree T is almost Souslin, i.e., the level set of any antichain in T is not stationary in ω1. | en |
dc.publisher | American Mathematical Society | - |
dc.relation | Set Theory, Model Theory and Set-Theoretic Topology | - |
dc.relation.ispartof | Proceedings of the American Mathematical Society | en |
dc.subject | Countable elementary submodel | Proper forcing | Side condition | en |
dc.title | Forcing with matrices of countable elementary submodels | en |
dc.type | Article | en |
dc.identifier.doi | 10.1090/proc/13133 | en |
dc.identifier.scopus | 2-s2.0-85013626181 | en |
dc.relation.firstpage | 2211 | en |
dc.relation.lastpage | 2222 | en |
dc.relation.issue | 5 | en |
dc.relation.volume | 145 | en |
dc.description.rank | M22 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.project.funder | MESTD | - |
crisitem.project.fundingProgram | Basic Research (BR or ON) | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174006 | - |
crisitem.author.orcid | 0000-0003-4543-7962 | - |
SCOPUSTM
Citations
3
checked on Dec 26, 2024
Page view(s)
16
checked on Dec 27, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.