DC FieldValueLanguage
dc.contributor.authorKurilić, Milošen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:21Z-
dc.date.available2020-05-01T20:29:21Z-
dc.date.issued2017-09-07en
dc.identifier.issn0001-8708en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2176-
dc.description.abstractLet 〈R,∼〉 be the Rado graph, Emb(R) the monoid of its self-embeddings, P(R)={f(R):f∈Emb(R)} the set of copies of R contained in R, and IR the ideal of subsets of R which do not contain a copy of R. We consider the poset 〈P(R),⊂〉 the algebra P(R)/IR, and the inverse of the right Green's preorder on Emb(R), and show that these preorders are forcing equivalent to a two step iteration of the form P⁎π where the poset P is similar to the Sacks perfect set forcing: adds a generic real, has the ℵ0-covering property and, hence, preserves ω1, has the Sacks property and does not produce splitting reals, while π codes an ω-distributive forcing. Consequently, the Boolean completions of these four posets are isomorphic and the same holds for each countable graph containing a copy of the Rado graph.en
dc.publisherElsevier-
dc.relationSet Theory, Model Theory and Set-Theoretic Topology-
dc.relationCNRS and NSERC (No. 455916)-
dc.relation.ispartofAdvances in Mathematicsen
dc.subjectForcing | Isomorphic substructure | Partial order | Random graph | Right Green's preorder | Self-embeddingen
dc.titleCopies of the random graphen
dc.typeArticleen
dc.identifier.doi10.1016/j.aim.2017.06.037en
dc.identifier.scopus2-s2.0-85030649015en
dc.relation.firstpage526en
dc.relation.lastpage552en
dc.relation.volume317en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.project.funderMESTD-
crisitem.project.fundingProgramBasic Research (BR or ON)-
crisitem.project.openAireinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174006-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 11, 2024

Page view(s)

10
checked on Nov 11, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.