DC FieldValueLanguage
dc.contributor.authorMoore, Justin Tatchen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:21Z-
dc.date.available2020-05-01T20:29:21Z-
dc.date.issued2017-11-01en
dc.identifier.issn0933-5846en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2175-
dc.description.abstractIn this paper we will analyze Baumgartner’s problem asking whether it is consistent that 2ℵ0≥ℵ2 and every pair of ℵ2-dense subsets of R are isomorphic as linear orders. The main result is the isolation of a combinatorial principle (∗ ∗) which is immune to c.c.c. forcing and which in the presence of 2ℵ0≤ℵ2 implies that two ℵ2-dense sets of reals can be forced to be isomorphic via a c.c.c. poset. Also, it will be shown that it is relatively consistent with ZFC that there exists an ℵ2 dense suborder X of R which cannot be embedded into - X in any outer model with the same ℵ2.en
dc.publisherSpringer Link-
dc.relationNSF, Grant DMS-1262019-
dc.relation.ispartofArchive for Mathematical Logicen
dc.subjectLinear order | Martin’s Axiom | Real type | ℵ -dense 2en
dc.titleBaumgartner’s isomorphism problem for ℵ2 -dense suborders of Ren
dc.typeArticleen
dc.identifier.doi10.1007/s00153-017-0549-4en
dc.identifier.scopus2-s2.0-85020267357en
dc.relation.firstpage1105en
dc.relation.lastpage1114en
dc.relation.issue7-8en
dc.relation.volume56en
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

4
checked on May 22, 2024

Page view(s)

43
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.