DC FieldValueLanguage
dc.contributor.authorAvilés, Antonioen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:21Z-
dc.date.available2020-05-01T20:29:21Z-
dc.date.issued2018-07-01en
dc.identifier.issn0026-9255en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2172-
dc.description.abstractGiven an analytic multiple gap Γ=Γi:i<n, we study the family B(Γ) of the sets A⊂ n for which there is a restriction Γi|a:i∈A which is still a multiple gap, while a∈Γi⊥ for i∉ A. This family always contains at least two sets of cardinality 2, and every set of cardinality k is contained in a set from B(Γ) of cardinality J(k), a number that grows as 382πk·9k. All these results can be stated in terms of the topology of the Čech–Stone remainder ω∗ and in terms of sequences in Banach spaces. For example, for any finite family of analytic open sets of ω∗ with non-disjoint closures there is always a point that lies in exactly two closures. And given a sequence xn n<ω of vectors in a Banach space that contains subsequences equivalent to ℓ1, ℓ2, … , ℓn in a way that cannot be separated, it always contains a subsequence xnk k<ω where the ℓ1 and ℓ2 subsequences cannot be separated, while there are at most 6 (and this is sharp) of the remaining p’s for which xnk k<ω contains subsequences equivalent to ℓp.en
dc.publisherSpringer Link-
dc.relationMINECO and FEDER (Nos. MTM2014-54182-P and MTM2017-86182-P)-
dc.relationFundación Séneca - Región de Murcia (No. 19275/PI/14)-
dc.relationNSERC (No. 455916)-
dc.relationCNRS (No. IMJ-PRG UMR7586)-
dc.relation.ispartofMonatshefte fur Mathematiken
dc.subjectAnalytic gap | Multiple gap | Types in the n-adic treeen
dc.titleIsolating subgaps of a multiple gapen
dc.typeArticleen
dc.identifier.doi10.1007/s00605-018-1189-4en
dc.identifier.scopus2-s2.0-85047134835en
dc.relation.firstpage373en
dc.relation.lastpage392en
dc.relation.issue3en
dc.relation.volume186en
dc.description.rankM22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 4, 2025

Page view(s)

25
checked on Jan 31, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.