DC FieldValueLanguage
dc.contributor.authorAvilés, Antonioen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:21Z-
dc.date.available2020-05-01T20:29:21Z-
dc.date.issued2018-07-01en
dc.identifier.issn0026-9255en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2172-
dc.description.abstractGiven an analytic multiple gap Γ=Γi:i<n, we study the family B(Γ) of the sets A⊂ n for which there is a restriction Γi|a:i∈A which is still a multiple gap, while a∈Γi⊥ for i∉ A. This family always contains at least two sets of cardinality 2, and every set of cardinality k is contained in a set from B(Γ) of cardinality J(k), a number that grows as 382πk·9k. All these results can be stated in terms of the topology of the Čech–Stone remainder ω∗ and in terms of sequences in Banach spaces. For example, for any finite family of analytic open sets of ω∗ with non-disjoint closures there is always a point that lies in exactly two closures. And given a sequence xn n<ω of vectors in a Banach space that contains subsequences equivalent to ℓ1, ℓ2, … , ℓn in a way that cannot be separated, it always contains a subsequence xnk k<ω where the ℓ1 and ℓ2 subsequences cannot be separated, while there are at most 6 (and this is sharp) of the remaining p’s for which xnk k<ω contains subsequences equivalent to ℓp.en
dc.publisherSpringer Link-
dc.relationMINECO and FEDER (Nos. MTM2014-54182-P and MTM2017-86182-P)-
dc.relationFundación Séneca - Región de Murcia (No. 19275/PI/14)-
dc.relationNSERC (No. 455916)-
dc.relationCNRS (No. IMJ-PRG UMR7586)-
dc.relation.ispartofMonatshefte fur Mathematiken
dc.subjectAnalytic gap | Multiple gap | Types in the n-adic treeen
dc.titleIsolating subgaps of a multiple gapen
dc.typeArticleen
dc.identifier.doi10.1007/s00605-018-1189-4en
dc.identifier.scopus2-s2.0-85047134835en
dc.relation.firstpage373en
dc.relation.lastpage392en
dc.relation.issue3en
dc.relation.volume186en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 26, 2024

Page view(s)

25
checked on Dec 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.