DC FieldValueLanguage
dc.contributor.authorPeng, Yinheen
dc.contributor.authorTodorčević, Stevoen
dc.date.accessioned2020-05-01T20:29:21Z-
dc.date.available2020-05-01T20:29:21Z-
dc.date.issued2019-01-01en
dc.identifier.issn0016-2736en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2169-
dc.description.abstractWe examine problems of Galvin and Nogura about preservation of the Fréchet property when taking finite or countably infinite powers of countable topological spaces and groups. It is well known that adding the requirement that the topologies of the given countable spaces are analytic avoids many of the pathologies in this area. Here we show that a set-theoretic principle about open graphs could serve a similar purpose. For example, we show using this principle that if for some n ≥ 2 the power X n of a countable space is Fréchet then so is X n+1 provided it is sequential. We also give an example showing that in some sense this result is optimal.en
dc.publisherInstytut Matematyczny Polskiej Akademii Nauk-
dc.relationNSERC (No. 455916)-
dc.relationCNRS (No. UMR7586)-
dc.relation.ispartofFundamenta Mathematicaeen
dc.subjectCountable Fréchet | Powers of Fréchet | Product of Fréchet | Sequentialen
dc.titlePowers of countable Fréchet spacesen
dc.typeArticleen
dc.identifier.doi10.4064/fm556-4-2018en
dc.identifier.scopus2-s2.0-85061720688en
dc.relation.firstpage39en
dc.relation.lastpage54en
dc.relation.issue1en
dc.relation.volume245en
dc.description.rankM23-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

SCOPUSTM   
Citations

4
checked on Apr 17, 2025

Page view(s)

19
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.