DC FieldValueLanguage
dc.contributor.authorStanković, Radomiren
dc.date.accessioned2020-05-01T20:29:20Z-
dc.date.available2020-05-01T20:29:20Z-
dc.date.issued1991-01-01en
dc.identifier.issn1000-9221en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2160-
dc.description.abstractIn this paper we discuss the definition of Gibbs derivatives on finite, not necessarily Abelian, groups in terms of the partial Gibbs derivatives. We consider the matrix representation of Gibbs derivatives defined in this way, which enables us to disclose FFT-like algorithms for the calculation of the values of Gibbs derivatives of functions on finite groups into fields admitting the existence of a Fourier transform on groups.en
dc.publisherSpringer Link-
dc.relation.ispartofApproximation Theory and its Applicationsen
dc.titleFast algorithms for calculation of Gibbs derivatives on finite groupsen
dc.typeArticleen
dc.identifier.doi10.1007/BF02845188en
dc.identifier.scopus2-s2.0-0009791978en
dc.relation.firstpage1en
dc.relation.lastpage19en
dc.relation.issue2en
dc.relation.volume7en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

7
checked on Apr 2, 2025

Page view(s)

11
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.