DC FieldValueLanguage
dc.contributor.authorEndow, Yasushien
dc.contributor.authorStanković, Radomiren
dc.date.accessioned2020-05-01T20:29:19Z-
dc.date.available2020-05-01T20:29:19Z-
dc.date.issued1995-01-01en
dc.identifier.issn0196-9722en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2156-
dc.description.abstractIn this paper we first give a general characterization of Gibbs derivatives on groups and then discuss their use in linear systems theory considering systems with both deterministic and stochastic input/output signals. We introduce the concept of p-adic linear stochastic systems, offering in that way another field for the application of Gibbs derivatives in a manner corresponding to that used in the theory of dyadic systems and stochastic dyadic systems.en
dc.publisherTaylor & Francis-
dc.relation.ispartofCybernetics and Systemsen
dc.titleGibbs derivatives in linear system theoryen
dc.typeArticleen
dc.identifier.doi10.1080/01969729508927516en
dc.identifier.scopus2-s2.0-0029409591en
dc.relation.firstpage665en
dc.relation.lastpage680en
dc.relation.issue6en
dc.relation.volume26en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

Page view(s)

15
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.