DC FieldValueLanguage
dc.contributor.authorEndow, Yasushien
dc.contributor.authorStanković, Radomiren
dc.date.accessioned2020-05-01T20:29:19Z-
dc.date.available2020-05-01T20:29:19Z-
dc.date.issued1995-01-01en
dc.identifier.issn0196-9722en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2156-
dc.description.abstractIn this paper we first give a general characterization of Gibbs derivatives on groups and then discuss their use in linear systems theory considering systems with both deterministic and stochastic input/output signals. We introduce the concept of p-adic linear stochastic systems, offering in that way another field for the application of Gibbs derivatives in a manner corresponding to that used in the theory of dyadic systems and stochastic dyadic systems.en
dc.publisherTaylor & Francis-
dc.relation.ispartofCybernetics and Systemsen
dc.titleGibbs derivatives in linear system theoryen
dc.typeArticleen
dc.identifier.doi10.1080/01969729508927516en
dc.identifier.scopus2-s2.0-0029409591en
dc.relation.firstpage665en
dc.relation.lastpage680en
dc.relation.issue6en
dc.relation.volume26en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

Page view(s)

15
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.