DC FieldValueLanguage
dc.contributor.authorStanković, Radomiren
dc.contributor.authorMoraga, Claudioen
dc.contributor.authorAstola, Jaakkoen
dc.date.accessioned2020-05-01T20:29:14Z-
dc.date.available2020-05-01T20:29:14Z-
dc.date.issued2004-07-26en
dc.identifier.isbn978-0-7695-2130-4-
dc.identifier.issn0195-623Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2099-
dc.description.abstractIn classical mathematics, Newton-Leibniz differential operators determine coefficients in Taylor series. At the same time, there are relationships between Fourier coefficients of a (differentiable) function and its derivative. By the analogy, Boolean differential operators are viewed as coefficients of Taylor-Maclaurin series-like expressions for switching functions, usually dented as Reed-Muller expressions. Spectral interpretation of these expressions, permits to relate the Boolean difference to the coefficients in Fourier series-like expressions for switching functions. This paper considers these two possible ways of introduction of differential operators for multiple-valued (MV) functions. We defined the Logic derivatives and Gibbs derivatives for MV functions as coefficients in Taylor-Maclaurin series for MV functions and through relationships to Fourier series-like coefficients, respectively.en
dc.publisherIEEE-
dc.relation.ispartofProceedings of The International Symposium on Multiple-Valued Logicen
dc.titleDerivatives for multiple-valued functions induced by galois field and reed-muller-fourier expressionsen
dc.typeConference Paperen
dc.relation.conference34th International Symposium on Multiple-Values Logic, ISMVL 2004; Toronto, Ont; Canada; 19 May 2004 through 22 May 2004-
dc.identifier.doi10.1109/ISMVL.2004.1319939-
dc.identifier.scopus2-s2.0-3142672282en
dc.relation.firstpage184en
dc.relation.lastpage189en
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 27, 2024

Page view(s)

16
checked on Nov 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.