DC FieldValueLanguage
dc.contributor.authorPorwik, Piotren
dc.contributor.authorStanković, Radomiren
dc.date.accessioned2020-05-01T20:29:13Z-
dc.date.available2020-05-01T20:29:13Z-
dc.date.issued2006-01-01en
dc.identifier.issn1641-876Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2089-
dc.description.abstractSpectral methods constitute a useful tool in the analysis and synthesis of Boolean functions, especially in cases when other methods reduce to brute-force search procedures. There is renewed interest in the application of spectral methods in this area, which extends also to the closely connected concept of the autocorrelation function, for which spectral methods provide fast calculation algorithms. This paper discusses the problem of spectral decomposition of Boolean functions using the Walsh transform and autocorrelation characteristics.en
dc.publisherAMCS-
dc.relation.ispartofInternational Journal of Applied Mathematics and Computer Scienceen
dc.subjectAutocorrelation coeffecients | Boolean function | Disjoint decomposition | Walsh spectrumen
dc.titleDedicated spectral method of Boolean function decompositionen
dc.typeArticleen
dc.identifier.scopus2-s2.0-33745456191en
dc.relation.firstpage271en
dc.relation.lastpage278en
dc.relation.issue2en
dc.relation.volume16en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 19, 2024

Page view(s)

15
checked on Nov 19, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.