DC FieldValueLanguage
dc.contributor.authorStanković, Radomiren
dc.contributor.authorAstola, Jaakkoen
dc.date.accessioned2020-05-01T20:29:12Z-
dc.date.available2020-05-01T20:29:12Z-
dc.date.issued2008-09-03en
dc.identifier.isbn978-0-769-53155-7en
dc.identifier.issn0195-623Xen
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2077-
dc.description.abstractSampling theorem states that under certain conditions, a signal can be reconstructed from data on a restricted area of the domain of definition of the signal model. In this context, the sampling theorem can be discussed also in the case of discrete signals to determine the minimum number of function values needed for the exact determination of a discrete function, with some additional information about the function in the spectral domain. It has been recently shown in [9] that in the case of multiple-valued (MV) functions, the notion of bandwidth relates to the concept of essential variables. Sampling conditions convert into requirements for periodicity and regularity in the truth-vectors of multiple-valued functions. In this paper, we extend these considerations by assuming a finite non-Abelian group as the domain for a given function f to be processed.en
dc.publisherIEEE-
dc.relation.ispartofProceedings of The International Symposium on Multiple-Valued Logicen
dc.titleRemarks on bandwidth and regularities in functions on finite non-Abelian groupsen
dc.typeConference Paperen
dc.relation.conference38th International Symposium on Multiple-Valued Logic, ISMVL 2008; Dallas, TX; United States; 22 May 2008 through 24 May 2008-
dc.identifier.doi10.1109/ISMVL.2008.32en
dc.identifier.scopus2-s2.0-50449086314en
dc.relation.firstpage238en
dc.relation.lastpage243en
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 19, 2024

Page view(s)

12
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.