DC FieldValueLanguage
dc.contributor.authorMoraga, Claudioen
dc.contributor.authorStanković, Radomiren
dc.contributor.authorAstola, Jaakkoen
dc.date.accessioned2020-05-01T20:29:10Z-
dc.date.available2020-05-01T20:29:10Z-
dc.date.issued2012-10-01en
dc.identifier.issn1542-3980en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2049-
dc.description.abstractTwo-sided spectra of patterns based on classes of orthogonal matrices are introduced and their main properties are discussed. In particular, the "mosaicness" of patterns is studied. Some effects of noise on mosaics can effectively be analyzed in the spectral domain. The mosaic structure of patterns can easily be recognized in the spectral domain, albeit the mosaic structure cannot always be unambiguously determined. 2D-Dirichlet kernels based on non-Abelian groups may however be used for a more efficient analysis of mosaics.en
dc.publisherOld City Publishing-
dc.relation.ispartofJournal of Multiple-Valued Logic and Soft Computingen
dc.subjectChrestenson transform | Mosaics | Spectral techniquesen
dc.titleSpectral analysis of mosaicsen
dc.typeArticleen
dc.identifier.scopus2-s2.0-84866683740en
dc.relation.firstpage341en
dc.relation.lastpage359en
dc.relation.issue4en
dc.relation.volume19en
dc.description.rankM21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

Page view(s)

15
checked on Nov 23, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.