DC FieldValueLanguage
dc.contributor.authorGajić, Dušanen
dc.contributor.authorStanković, Radomiren
dc.contributor.authorRadmanović, Milošen
dc.date.accessioned2020-05-01T20:29:08Z-
dc.date.available2020-05-01T20:29:08Z-
dc.date.issued2017-01-01en
dc.identifier.issn1755-0556en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2023-
dc.description.abstractWe present an analysis of time efficiency of five different implementations of the LU and the QR decomposition of matrices performed on central processing unit (CPUs) and graphics processing units (GPUs). Three of the considered implementations, developed using the Eigen C++ library, Intel MKL, and MATLAB are executed on a multi-core CPU. The remaining two implementations are processed on a GPU and employ MATLAB's Parallel Computing Toolbox and Nvidia CUDA augmented with the cuSolver library. Computation times are compared using randomly generated single- and double-precision floating-point matrices. The experiments for the LU decomposition show that the two GPU implementations offer best performance for matrices that can fit into the GPU global memory. For larger LU decomposition problem instances, Intel MKL on the CPU is found to be the fastest approach. Furthermore, Intel MKL also proves to be the fastest method for computing QR decomposition for all considered sizes of matrices.en
dc.publisherInderscience-
dc.relation.ispartofInternational Journal of Reasoning-based Intelligent Systemsen
dc.subjectCompute Unified Device Architecture | CUDA | General-purpose algorithms on graphics processing unit | GPGPU | Intel MKL | LU decomposition | MATLAB | Parallel computing | Performance comparison | QR decompositionen
dc.titleA performance analysis of computing the LU and the QR matrix decompositions on the CPU and the GPUen
dc.typeConference Paperen
dc.identifier.doi10.1504/IJRIS.2017.088701en
dc.identifier.scopus2-s2.0-85038854430en
dc.relation.firstpage114en
dc.relation.lastpage121en
dc.relation.issue2en
dc.relation.volume9en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 23, 2024

Page view(s)

20
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.