DC FieldValueLanguage
dc.contributor.authorStanković, Radomiren
dc.date.accessioned2020-05-01T20:29:06Z-
dc.date.available2020-05-01T20:29:06Z-
dc.date.issued2017-10-01en
dc.identifier.isbn978-3-319-48316-0-
dc.identifier.issn1434-9922en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2013-
dc.description.abstractReed-Muller (RM) expressions are an important class of functional expressions for binary valued (Boolean) functions which have a double interpretation, as analogues to both Taylor series or Fourier series in classical mathematical analysis. In matrix notation, the set of basic functions in terms of which they are defined can be represented by a binary triangular matrix. Reed-Muller-Fourier (RMF) expressions are a generalisation of RM expressions to multiple valued functions preserving properties of RM expressions including the triangular structure of the transform matrix. In this paper, we discuss different methods for computing RMF coefficients over different data structure efficiently in terms of space and time. In particular, we consider algorithms. corresponding to Cooley-Tukey and constant geometry algorithms for Fast Fourier transform. We also consider algorithms based on various decompositions borrowed from the decomposition of the Pascal matrix and related computing algorithms.en
dc.publisherSpringer Link-
dc.relation.ispartofClaudio Moraga: A Passion for Multi-Valued Logic and Soft Computingen
dc.relation.ispartofseriesStudies in Fuzziness and Soft Computing-
dc.titleThe reed-muller-fourier transform—computing methods and factorizationsen
dc.typeBook Chapteren
dc.identifier.doi10.1007/978-3-319-48317-7_9en
dc.identifier.scopus2-s2.0-84992416333en
dc.relation.firstpage121en
dc.relation.lastpage151en
dc.relation.volume349en
item.grantfulltextnone-
item.openairetypeBook Chapter-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 4, 2024

Page view(s)

18
checked on Dec 3, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.