DC FieldValueLanguage
dc.contributor.authorAstola, Jaakkoen
dc.contributor.authorAstola, Pekkaen
dc.contributor.authorStanković, Radomiren
dc.contributor.authorTabus, Ioanen
dc.date.accessioned2020-05-01T20:29:06Z-
dc.date.available2020-05-01T20:29:06Z-
dc.date.issued2018-01-01en
dc.identifier.issn1542-3980en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/2012-
dc.description.abstractIn this paper, we consider incompletely defined discrete functions, i.e., Boolean and multiple-valued functions, f : S → {0, 1, . . . , q - 1} where S ⊆ {0, 1, . . . , q - 1}n i.e., the function value is specified only on a certain subset S of the domain of the corresponding completely defined function. We assume the function to be sparse i.e. |S| is 'small' relative to the cardinality of the domain. We show that by embedding the domain {0, 1, . . . , q - 1}n , where n is the number of variables and q is a prime power, in a suitable ring structure, the multiplicative structure of the ring can be used to construct a linear function {0, 1, . . . , q - 1}n → {0, 1, . . . , q - 1}m that is injective on S provided that m > 2 logq |S| + logq (n - 1). In this way we find a linear transform that reduces the number of variables from n to m, and can be used e.g. in implementation of an incompletely defined discrete function by using linear decomposition.en
dc.publisherOld City Publishing-
dc.relation.ispartofJournal of Multiple-Valued Logic and Soft Computingen
dc.titleAn algebraic approach to reducing the number of variables of incompletely defined discrete functionsen
dc.typeArticleen
dc.identifier.scopus2-s2.0-85055661435en
dc.relation.firstpage239en
dc.relation.lastpage253en
dc.relation.issue3en
dc.relation.volume31en
dc.description.rankM22-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 12, 2024

Page view(s)

17
checked on Dec 12, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.