DC Field | Value | Language |
---|---|---|
dc.contributor.author | Astola, Jaakko | en |
dc.contributor.author | Astola, Pekka | en |
dc.contributor.author | Stanković, Radomir | en |
dc.contributor.author | Tabus, Ioan | en |
dc.date.accessioned | 2020-05-01T20:29:06Z | - |
dc.date.available | 2020-05-01T20:29:06Z | - |
dc.date.issued | 2018-01-01 | en |
dc.identifier.issn | 1542-3980 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/2012 | - |
dc.description.abstract | In this paper, we consider incompletely defined discrete functions, i.e., Boolean and multiple-valued functions, f : S → {0, 1, . . . , q - 1} where S ⊆ {0, 1, . . . , q - 1}n i.e., the function value is specified only on a certain subset S of the domain of the corresponding completely defined function. We assume the function to be sparse i.e. |S| is 'small' relative to the cardinality of the domain. We show that by embedding the domain {0, 1, . . . , q - 1}n , where n is the number of variables and q is a prime power, in a suitable ring structure, the multiplicative structure of the ring can be used to construct a linear function {0, 1, . . . , q - 1}n → {0, 1, . . . , q - 1}m that is injective on S provided that m > 2 logq |S| + logq (n - 1). In this way we find a linear transform that reduces the number of variables from n to m, and can be used e.g. in implementation of an incompletely defined discrete function by using linear decomposition. | en |
dc.publisher | Old City Publishing | - |
dc.relation.ispartof | Journal of Multiple-Valued Logic and Soft Computing | en |
dc.title | An algebraic approach to reducing the number of variables of incompletely defined discrete functions | en |
dc.type | Article | en |
dc.identifier.scopus | 2-s2.0-85055661435 | en |
dc.relation.firstpage | 239 | en |
dc.relation.lastpage | 253 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 31 | en |
dc.description.rank | M22 | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
SCOPUSTM
Citations
1
checked on Dec 12, 2024
Page view(s)
17
checked on Dec 12, 2024
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.